
FAQs on Convex Optimization

1. What is a convex programming problem?

A convex programming problem is the minimization of a convex function 
on a convex set, i.e.

    min f(x)

    X ∈ C 

             where f: Rn  
→R and C  Rn . f is a convex function and c a convex set.

            Usually C is described as follows

C = { x: gi (x) ≤0, i=1.......m, h j
 (^)=0, j=1.....m} 

            where gi ' s  are convex function and h j ' s  are affine function.

2.  What is the importance of convex optimization problems?

The major importance of convex programming or convex optimization arises 
from the fact that every local minimum is a global minimum.

Let us consider minimizing f: Rn →R or C Rn  where f is a convex function 

and C is a convex set.

Let x́ be a local minimum of f on C. thus Ǝδ>0 such that ∀ z ∈ ( x́ )∩C, 

f(z)≥f( x́ ). Let X ∈ C( take it outside Bδ ( x́ )∩C). Join x &  Bδ ( x́

)∩C)using a line segment. Let 

 Z λ = λ x + (1- λ) x́

Thus Ǝ λ0∈  (o,1) such that ∀∈  (o, λ0
,

¿Z λ∈Bδ  ( x́ )∩C

Thus for λ ∈  (o, λ0 ¿

f (zλ)≥ (
x́

)



f(λx + (1-λ) 
x́

)  ≥ f(
x́

)

By convexity of 

λf(x) +(1-λ) f() ≥ f(
x́

)

=>      λ(f(x) - f(
x́

))≥ o

=>     (f(x) - f(
x́

))≥ o, as λ >0

Since x is arbitrary we have as 
x́

the global minimum.

3.  What can we tell about the continuity and differentiality of a convex function?

• If f:
Rn →R is convex then f is continuous and even locally Lipschitz, 

i.e; for any x ∈ Rn

         and K≥ 0 
such that for all y,z 

∈
 
Bδ   (x) we have

|f (y)- f (z)|≤ Kǁ y-zǁ,

• If f: C → R is convex and C is a closed convex set then, f is continuous on the 
interior of C.

• If f:
Rn →R is convex, then it is differentiable almost everywhere, 

i.e.; the set of points in Rn  at which f is not differentiable forms a 

set of measure zero.

• A differentiable function f: Rn →R is convex if and only if; for all x, y 

in Rn .

f(y) -f(x) ≥ < 〈∇ f ( x ) , y−x 〉

Thus if (x ∈ Rn ) be such that ∇ f=0,  then f has a global 

minimizer at x.

4. If f: Rn  →R  is differentiable then can we detect it.

          If  f is twice continuously differentiable then there is at least a theoretical 
way to detect it. 

 A function f is convex if and only if the Hersian matrix ∇2
 f(x) is positive 

for all x ∈ Rn  semi-definitely.

 If ∇2
 f(x) is positive definite for all x ∈ Rn  , then f is strictly converse. 

The converse need not be true. 

Example : f(x) = X4, X ∈ R

 If f is strongly convex then ∇2

f(x) is always positive definite.



Let f be a p-strongly convex function. since f is twice continuously 
differentiable, it is differentiable and hence

f(y) - f(x) 〈∇ f (x ) , y−x 〉+p ǁy-xǁ2, P>0

Now by Taylor's theorem for any λ>0,  & w ∈ Rn

f
x+ λw

(¿ = f
x
(¿ + λ 〈∇ f (x) ,w 〉 + 

1
2  λ2 〈w ,∇ 2f(x) w

λ
〉+0¿

2)

Now by strong convexity

 
1
2  λ2 〈w ,∇2

f(x) w
λ

〉+0¿
2) ≥Pλ 2 ǁwǁ2

=>  
1
2   〈w ,∇2

f(x) w
〉

 +¿  0
( λ2 )

λ2
≥ P ǁwǁ2  

Now as λ ↓0 (i.e; λ →0¿ we have

1
2   〈w ,∇2

f(x) w 〉     ≥P ǁwǁ2  

i.e; 〈w ,∇2
f(x) w 〉   ≥2P ǁwǁ2  

Thus ∇2
f(x) is positive definite.

5. What are the major classes of convex optimization problems?

a) Linear Programming problem
b) Conic  Programming problem
c) Semi-definite Programming
d) Quadratic convex programming under linear constraints
e) Quadratic convex programming under quadratic constraint

• Linear Programming   :     min < ax >
subject to

Ax = b
x ≥ o

where C ∈ Rn , A is a m × n matrix, b ∈ R m, & x≥ 0 ⇒ x ∈ Rn

This is called linear programming in the standard form. 
Important feature:  If a lower bound exists a minimizer exists.

• Conic Programming   :     

min < ax >



subject to
Ax = b

x ∈ K  

where K is a pointed convex cone. The cone is called pointed if K ∩ (-K) = 
{0}
K for example could be the ice-cream cone or Lorenz-cone.

K= { x ∈ Rn } :  √ x12+x2
2
+ ............+xn−1

2

........... ≤  xn; xn≥0 case the 

above conic problem is called the second-order conic programming 
problem (SOCP for short).

• Lorenz cone:  

   Lorenz cone is not a polyhedral cone.
•  Semi- definite Programming   : 

Sn    : set of nΧn systematic matrices

+¿
n

S¿
  : set of nΧn,  systematic and positive semidefinite matrices

Sn
++  : { X ∇∈  Sn

+ : X is positive definite}

+¿
n

S¿
 is a convex cone but not polyhedral

Inner product in Sn  : ¿X ,Y >¿  trace (X,Y)

               min ¿C , X>¿

                             ¿A i , X>¿  = bi

                             X
+¿

n

∈S¿
 

• Semi definite programming or SDD for short is not a linear programming 
problem in matrices.



Quadratic convex programming with linear constraints.

min
1
2
<x ,Qx  ¿  + ¿c , x>¿  + d

subject to Ax = b

x ≥0

Q ∈ Sn
+ , c ∈ Rn , d ∈  R , A is a m ×n  matrix and x

+¿
n

≥0⇔ x∈ R¿

Important fact : If a lower bound exists, then a minimizer exists. This is the 
celebrated Frank-Wolfe theorem.

• Quadratic convex programming with linear constraints

min
1
2  ¿ x ,Q

0 x>¿  + ¿C
0 , x>¿  + d0

subject to

      
1
2  ¿ x ,Qi  x>¿  + ¿

  
Ci , x>¿  + d i

 
≤0    

i=1,............,m

where Q
0, 
Q1

, .............., 
Qm

 are positive semi-definite matrices, C
0, 
C1,

 

Cm are vectors in Rn  and d0 , d1.......dm are elements in R.

6. What are saddle point conditions?
 
Consider the convex optimization problem (CP)

min f(x)
subject to

gi(x)≤ 0, i-1,2,........m

Construct the Lagrangian as follows

L (x, λ ) = f(x) + λ1 g1(x) + λ2 g2(x)+..........+ λm gm(x)

where λ = 

+¿
m

( λ1λm)∈ R¿   i.e; λi 
≥0 , for all i=1,.......m 

A vector is ( x́ ,  λ́ ) 
+¿

m

∈ Rn×R¿
 is called a saddle point if

L ( x́ , λ ) ≤ ( x́ , λ́ ) ≤ L ( x, λ́ ), for all x ∈ Rn , and λ 
+¿

m

∈ R¿
 



If solves convex optimization problem and slater condition holds, i.e; there exists  
x̂  ∈ Rn s.t. 

¿ gi( x̂)  ¿0.  ∀ i=1,......,m then there exists 
+¿

m

λ́∈ R¿
s.t.

i)  L ( x́ , λ ) ≤ ( x́ , λ́ ) ≤ L ( x, λ́ ), for all x ∈ Rn , and λ 
+¿

m

∈ R¿
 

ii) λ́ gi ( x́ ) = 0, i=1,.......,m

If there exists a pair of ( x́ ,  λ́ ) 
+¿

m

∈ Rn×R¿
 such that  i) & ii) hold then x́  

solves (CP).


