FAQs on Convex Optimization

1. What is a convex programming problem?

A convex programming problem is the minimization of a convex function
on a convex set, i.e.

min f(x)

x € c
where f: R" _R and C R". fis a convex function and c a convex set.
Usually C is described as follows

C={x 9 (x)=0,i=1....m, i (®)=0,j=1....m}

where 9 5 are convex function and hj's are affine function.

2. What is the importance of convex optimization problems?

The major importance of convex programming or convex optimization arises
from the fact that every local minimum is a global minimum.

Let us consider minimizing f: R -RorC R’ where f is a convex function

and C is a convex set.
Let < be a local minimum of f on C. thus 36>0 such that ¥ z € ( * )nC,

fiz)=f( % ).LetX € C(takeitoutside 25 ( X )nC).Joinx& Bs ( X
)nC)using a line segment. Let
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=>  AfX)-f( © )=o

M(x) +(1-A) f() = f(

X
=>  (f(x) - f( ))=0,as A >0
X
Since x is arbitrary we have as the global minimum.

3. What can we tell about the continuity and differentiality of a convex function?
n
* Iff R™ LR is convex then f is continuous and even locally Lipschitz,
. n
i.e; forany x €R

and K= 0 € B
such that for all Y,Z 8

If (y)- f (2)|= K] y-Z||,

* Iff: C > Ris convex and C is @ closed convex set then, f is continuous on the
interior of C.

(x) we have

 Iff R LRis convex, then it is differentiable almost everywhere,

i.e.; the set of points in R"  at which f is not differentiable forms a

set of measure zero.

« A differentiable function f: R
in R

-R is convex if and only if; for all x, y

f(y) -f(x) = < Vflx),y—x

Thus if (x €R" )besuchthat /=% then f has a global
minimizer at x.
4. If f: R - R is differentiable then can we detect it.

If fis twice continuously differentiable then there is at least a theoretical
way to detect it.

2
» A function f is convex if and only if the Hersian matrix v f(x) is positive

forallx €R" semi-definitely.

2 n
> If v f(x) is positive definite for all x €R , then f is strictly converse.
The converse need not be true.
Example : f(x) = X*, X €R

2
» If fis strongly convex then v f(x) is always positive definite.



Let f be a p-strongly convex function. since f is twice continuously
differentiable, it is differentiable and hence

fy) - fx) (VIXLYy=x)+p 1y, P>0

Now by Taylor's theorem for any A>0, &w ER
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Now by strong convexity
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Thus v f(x) is positive definite.

5. What are the major classes of convex optimization problems?

a) Linear Programming problem

b) Conic Programming problem

c) Semi-definite Programming

d) Quadratic convex programming under linear constraints

e) Quadratic convex programming under quadratic constraint

e« Linear Programming: min < ax >
subject to
Ax =D
X=0

whereC €R" Aisam X nmatrix, b SR m gx=0 = x €FR

This is called linear programming in the standard form.
Important feature: If a lower bound exists a minimizer exists.

 Conic Programming :

min < ax >



subject to
Ax =Db

x €K

where K is a pointed convex cone. The cone is called pointed if K n (-K) =
{0}

K for example could be the ice-cream cone or Lorenz-cone.

IA

X, x,20

n 2 2 2
K= {x €R 3. \/Xl"xz* ------------ Xl case the

above conic problem is called the second-order conic programming
problem (SOCP for short).

« Lorenz cone:

Lorenz cone is not a polyhedral cone.
» Semi- definite Programming :

S" . set of nXn systematic matrices
+{ : . e :
S, :setof nXn, systematic and positive semidefinite matrices

Sy X Ve S",: X is positive definite}
+
S, is aconvex cone but not polyhedral
Inner product in S . X Y2 race (X,Y)
min LC,X>(
A ’X>(.J = b,

+"
X E Si,

« Semi definite programming or SDD for short is not a linear programming
problem in matrices.



Quadratic convex programming with linear constraints.

l< Q . : )
min 5 ~ORY 64 66X26 4 g
subjectto Ax=Db

x 20

n +(;n
Q € s, c €R 4 € R,Aisam *" matrix and x >0=xER,

Important fact : If a lower bound exists, then a minimizer exists. This is the
celebrated Frank-Wolfe theorem.

* Quadratic convex programming with linear constraints

min% tx,Q . x>6 4 4C o, x> + do
subject to
% 6X,Q, x>6 400 C, ' x> d <0
=1, ,m
where Q 0, Q R Qn are positive semi-definite matrices, c 0, C,

C

n
m are vectorsin R and do, di...dmn are elements in R.

6. What are saddle point conditions?

Consider the convex optimization problem (CP)
min f(x)
subject to
gi(x)=< 0, i-1,2,........ m

Construct the Lagrangian as follows

L (x, A) =1f(x) + A191(x) + A2 G2(X)+.......... + Am gm(X)
+4"
where A = ()‘1)€R6 i.e; A 20 , for alli=1,....... m
Am
, )\ +£,m
A vectoris ( % ) €R'xR, Iscalleda saddle point if

. m

! L) ) n +6
L( A )= %Y y=L(x, A ) forallx €R" JandA eR,



If solves convex optimization problem and slater condition holds, i.e; there exists
X ER' g,

v +0"

Lgi(x) 0. i=1,.....,m then there exists JeR, s..

. o : n +4"
)L XA )= %A )ysL(x A ) forallx €R LandA eRr
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If there exists a pair of ( X, A ) e€R"xR, suchthat i)&ii) hold then X

solves (CP).



